6,907 research outputs found

    Problems on electrorheological fluid flows

    Full text link
    We develop a model of an electrorheological fluid such that the fluid is considered as an anisotropic one with the viscosity depending on the second invariant of the rate of strain tensor, on the module of the vector of electric field strength, and on the angle between the vectors of velocity and electric field. We study general problems on the flow of such fluids at nonhomogeneous mixed boundary conditions, wherein values of velocities and surface forces are given on different parts of the boundary. We consider the cases where the viscosity function is continuous and singular, equal to infinity, when the second invariant of the rate of strain tensor is equal to zero. In the second case the problem is reduced to a variational inequality. By using the methods of a fixed point, monotonicity, and compactness, we prove existence results for the problems under consideration. Some efficient methods for numerical solution of the problems are examined.Comment: Presented to the journal "Discrete and Continuous Dynamical Systems, Series

    Spatiotemporal evolution of runaway electrons from synchrotron images in Alcator C-Mod

    Full text link
    In the Alcator C-Mod tokamak, relativistic runaway electron (RE) generation can occur during the flattop current phase of low density, diverted plasma discharges. Due to the high toroidal magnetic field (B = 5.4 T), RE synchrotron radiation is measured by a wide-view camera in the visible wavelength range (~400-900 nm). In this paper, a statistical analysis of over one thousand camera images is performed to investigate the plasma conditions under which synchrotron emission is observed in C-Mod. In addition, the spatiotemporal evolution of REs during one particular discharge is explored in detail via a thorough analysis of the distortion-corrected synchrotron images. To accurately predict RE energies, the kinetic solver CODE [Landreman et al 2014 Comput. Phys. Commun. 185 847-855] is used to evolve the electron momentum-space distribution at six locations throughout the plasma: the magnetic axis and flux surfaces q = 1, 4/3, 3/2, 2, and 3. These results, along with the experimentally-measured magnetic topology and camera geometry, are input into the synthetic diagnostic SOFT [Hoppe et al 2018 Nucl. Fusion 58 026032] to simulate synchrotron emission and detection. Interesting spatial structure near the surface q = 2 is found to coincide with the onset of a locked mode and increased MHD activity. Furthermore, the RE density profile evolution is fit by comparing experimental to synthetic images, providing important insight into RE spatiotemporal dynamics

    Thermal measurements of microwave transmitter feedhorn window

    Get PDF
    Thermal measurements of microwave transmitter feedhorn windows were performed using an imaging infrared radiometer. The measurement technique is described and results are presented for windows made of 0.001-in. Kapton (trademark of Dupont Chemical Co.) and 0.1-in. HTP-6 (Space Shuttle tile material). Measured and calculated temperatures agree well

    Interpretation of runaway electron synchrotron and bremsstrahlung images

    Full text link
    The crescent spot shape observed in DIII-D runaway electron synchrotron radiation images is shown to result from the high degree of anisotropy in the emitted radiation, the finite spectral range of the camera and the distribution of runaways. The finite spectral camera range is found to be particularly important, as the radiation from the high-field side can be stronger by a factor 10610^6 than the radiation from the low-field side in DIII-D. By combining a kinetic model of the runaway dynamics with a synthetic synchrotron diagnostic we see that physical processes not described by the kinetic model (such as radial transport) are likely to be limiting the energy of the runaways. We show that a population of runaways with lower dominant energies and larger pitch-angles than those predicted by the kinetic model provide a better match to the synchrotron measurements. Using a new synthetic bremsstrahlung diagnostic we also simulate the view of the Gamma Ray Imager (GRI) diagnostic used at DIII-D to resolve the spatial distribution of runaway-generated bremsstrahlung.Comment: 21 pages, 11 figure

    A Super-Integrable Discretization of the Calogero Model

    Full text link
    A time-discretization that preserves the super-integrability of the Calogero model is obtained by application of the integrable time-discretization of the harmonic oscillator to the projection method for the Calogero model with continuous time. In particular, the difference equations of motion, which provide an explicit scheme for time-integration, are explicitly presented for the two-body case. Numerical results exhibit that the scheme conserves all the(=3)(=3) conserved quantities of the (two-body) Calogero model with a precision of the machine epsilon times the number of iterations.Comment: 22 pages, 5 figures. Added references. Corrected typo

    ADM Worldvolume Geometry

    Full text link
    We describe the dynamics of a relativistic extended object in terms of the geometry of a configuration of constant time. This involves an adaptation of the ADM formulation of canonical general relativity. We apply the formalism to the hamiltonian formulation of a Dirac-Nambu-Goto relativistic extended object in an arbitrary background spacetime.Comment: 4 pages, Latex. Uses espcrc2.sty To appear in the proceedings of the Third Conference on Constrained Dynamics and Quantum Gravity, September, 1999. To appear in Nuclear Physics B (Proceedings Supplement
    • …
    corecore